
A Mutation Testing Strategy for Solidity
Smart Contracts

Morena Barboni Andrea Morichetta
nome.cognome@unicam.it

School of Science and Technology
University of Camerino -  ITALY

Workshop multidisciplinare su blockchain e DLT: incontro fra accademia e imprese
Firenze, 7-8 Novembre 2022

Andrea Polini



Quality ASSURANCE
for Smart Contracts
why should we care?

● Smart Contracts must 
comply with high reliability 
standards.

● Developing and testing 
Smart Contracts present 
unique challenges tied to 
the blockchain environment.

● The developer community 
requires tools for assessing 
the quality of their testing 
activities.

PERMANENT 
TRANSACTIONS

CODE IMMUTABILITY
VALUABLE ASSETS

Faulty Smart Contract 
code can lead to the 
accidental or malicious 
loss of assets.

ENVIRONMENT

LACK OF BEST PRACTICES

Code examples and best 
practices for writing 
reliable code are lacking. 

A Smart Contract 
execution relies on 
the interactions 
with other 
cooperating 
contracts.

Assets lost during a 
Smart Contract 

execution are 
unrecoverable.

Delivering reliable 
code is more 

challenging due to 
the young and 

evolving software 
stack.

SOFTWARE STACK

Faults in the Smart 
Contract code cannot be 

fixed after deployment.



Mutation Testing

Mutation Testing is a powerful fault-based testing technique. 

EVALUATE THE 
ADEQUACY OF THE 

TEST SUITE IN FINDING 
REAL FAULTS

● Certain elements of the target program are mutated 
to mimic a typical programming fault

● The fault-injection process aims to:

GUIDE THE 
IMPROVEMENT OF THE 
TEST DATA BASED ON 
UNDETECTED FAULTS



MUTATION OPERATORS

ORIGINAL PROGRAM P

MUTANTS OF P

Target of the Mutation 
Testing process

Set of fault 
injection rules.

Each operator specifies how 
the code of P should be 

modified.

Mutation Testing
the process

function update(uint price) private 

returns(uint) {  

  require(price >= 0)

  ...

}

function update(uint price) 

private returns(uint) { 

  require(price > 0)

  p = price;

  return p;

}

Mutated versions of the 
original program.

Each Mutant contains a minor 
change that mimics a common 

programming fault.

BOR

FVR

RSD

function update(uint price) public 

returns(uint) {  ...  }

function update(uint price) private 

returns(uint) {  

   ...

  // return p;

}



Mutation Score
Provides an assessment 

of the fault-detection 
capabilities of the Test 

Suite

The Test Suite 
is run on each 
mutant of P

function buy(uint a) public { 

  require(a < max)

}

function buy(uint a) private { 

  require(a <= max)

}

function buy(uint a) public { 

  require(a >= max)

}

function buy(uint a) public 

onlyOwner { 

  require(a <= max)

}

AT LEAST ONE 
TEST FAILS

ALL TESTS 
PASS

KILLED Mutants

LIVE Mutants

Undetected Mutants
Provide useful 

feedback for improving 
the Test Suite

Mutation Testing
the process



Cost Reduction

STILLBORN MUTANTS
are killed by the compiler

REDUNDANT MUTANTS 
do not provide new information 
about the Test Suite quality Testers can select:

➔ Mutation Operators 
➔ Contract Files 

1 LIMITING STILLBORN    
      MUTANTS

➔ SELECTIVE MUTATION
We select operators that are 
empirically found to limit stillborn 
mutants.

➔ MUTATION RULES
SuMo collects semantic 
information during the visit of the 
AST to improve the efficacy of 
the mutations.

➔ SELECTIVE MUTATION
We select operators that are 
empirically found to limit 
redundancy.

➔ MUTATION RULES
Mutations that are likely to 
generate redundant mutants are 
merged.

2 LIMITING REDUNDANT    
       MUTANTS 3 CUSTOMIZED MUTATION    

       PROCESS



Type Class Operator ID Class Operator ID

Solidity
Specific

Address AVR, SCEC Functions PKD, RSD, RVS

Block and Transaction 
Properties GVR, TOR Function Modifiers MOC, MOD, MOI,

 MOR, OMD

Constructor CCD Global Functions MCR, SFD, SFI

Data Location DLR Libraries SFR

Ether Transfer ETR Operators DOD

Events EED Units VUR

Exception Handling EHC Visibility FVR, VVR

General
Control BCRD, CBD, CSC, LSC Overriding ORFD, SKD, SKI

Expressions AOR, BOR, ICM, UORD Overloading ACM, OLFD

Literals BLR, HLR, SLR Types ECS, ER

SuMo currently 
implements 44 

Mutation 
Operators

SuMo Mutation Operators



Implementation



   https://github.com/MorenaBarboni/SuMo-SOlidity-MUtator

NodeJS solidity-parser-antlr

Truffle Ganache

Lightweight 
Javascript run-time 
environment

Solidity parser for 
Javascript built on top 

of a robust antlr4 
grammar

Popular testing 
framework for Ethereum 
Smart Contracts

Sets up a local Ethereum 
blockchain for deploying 

and testing Smart 
Contracts

Technologies



Validation



2 Open-Source 
Ethereum 
dApps

Shipped with 
high-coverage 

Test Suites

DApp

Name Smart Contracts LOC

ETHER
CROWDFUNDING

Crowdfunding
Campaign.sol 428

BIONIC EVENT 
DAPP

Event.sol  
EventFactory.sol 182

Test Suite

DApp
Size LOC Stmt. 

Coverage
Branch 

Coverage

ETHER
CROWDFUNDING 35 902 93.83 71.3

BIONIC EVENT 
DAPP 25 261 90 65

Case Studies



Main Findings

Experimental Results ( 1/2 )

The selected applications achieve 
low Mutation Scores.

Test Suites with good coverage values do 
not ensure code reliability.

SuMo generates a relatively low 
number of stillborn mutants ( ~ 10%)

1

2

3

The Mutation Score is particularly low 
for Solidity-specific mutations

Addressing the distinctive mechanisms of 
the Solidity language is particularly 
challenging for Smart Contract developers.

Application Mutation
Operators

Mutants
Mutation 
Score (%)Tot. Stillborn

ETHER
CROWDFUNDING

ALL
SOLIDITY 

681
401

59
38

47,7
28,9

BIONIC EVENT 
DAPP

ALL
SOLIDITY 

189
148

29
29

58,7
54,7

TABLE V: Experimental Results



Operators

Mutants

MS (%)Tot. Stillborn Killed

ALL
SOLIDITY 

189
148

29
29

74
52

58,7
54,7

Analysing the live mutants allowed us to:

● Improve the existing test data and design additional test cases;

● Identify and correct issues in the SUT (Software  Under Test);

● Improve the fault-detection capabilities of the provided Test Suite.

Operators

Mutants

MS (%)Tot. Stillborn Killed

ALL
SOLIDITY 

172
136

29
29

114
87

86,8
85

BIONIC-EVENT-DAPP BIONIC-EVENT-DAPP
(After the Mutation Analysis)

Experimental Results ( 2/2 )



Conclusions

● Mutation Score is a more reliable indicator of the Test Suite quality 

○ Mutation Testing can benefit business-critical programs like Smart Contracts. 

● The preliminary validation of SuMo provided encouraging results:

○ The faults injected by SuMo were frequently missed by real Test Suites;
○ Mutation analysis is a feasible approach for improving the Mutation Score.

● SuMo can help developers to:

○  write higher quality Test Suites
○ deliver more reliable Solidity applications.



Thank you for your attention!


